October 17, 2016

Submitted Electronically Via Regulations.gov

Division of Dockets Management (HFA-305)
Food and Drug Administration
5630 Fishers Lane, Rm. 1061
Rockville, MD 20852

Re: Docket No. FDA-2014-D-0055; Voluntary Sodium Reduction Goals: Target Mean and Upper Bound Concentrations for Sodium in Commercially Processed, Packaged, and Prepared Foods

The Salt Institute is pleased to submit the following comments regarding the Food and Drug Administration’s (FDA’s) draft guidance on voluntary sodium reduction goals in foods. The Salt Institute is a North American based, non-profit trade association dedicated to advocating the many benefits of salt, particularly as related to nutrition. The Salt Institute is dedicated to adherence to sound science as it seeks to improve the knowledge of the many ways salt can benefit individuals and the environment.

We appreciate the opportunity to provide comments on the draft guidance and look forward to engaging in a dialogue with the agency on the issues surrounding sodium reduction in foods. In the following comments, we express our serious concerns with the agency’s draft guidance document. While the agency purports the guidance would set “voluntary targets,” the practical reality is the guidance would set maximum acceptable levels for sodium. FDA inspectors, non-governmental organizations (NGOs), and class action lawyers would view the upper bound targets as the maximum quantity of sodium that could be present in individual food products. Our comments focus on the absence of any legal authority in the Federal Food, Drug, and Cosmetic Act (FFDCA) for the agency to set restrictions on the maximum levels of use of an ingredient like salt that is generally recognized as safe (GRAS) on the basis of common use in foods. We also raise significant concerns with the agency’s characterization of the underlying science. FDA has mischaracterized the findings of the most recent IOM report on sodium and omits the expert panel’s caution that the “evidence in some cases is suggestive, however, of associations between lower sodium intake (below 2,300 mg per day) and potential increased risk of adverse health outcomes.” FDA’s efforts at significantly curtailing sodium intake could actually expose a sizable subset of the population to an increased risk of disease. For the reasons explored in more detail in this comment, we urge the agency to abandon its efforts to finalize the draft guidance.

The Agency Lacks Legal Authority to Specify Average or Maximum Levels of Nutrients in Foods

The FFDCA provides no authority for FDA to prescribe or recommend specific amounts of a nutrient that should be present in a food. Nor does the draft guidance cite any legal
Congress specifically considered how to address nutrients that are tied to an increased risk of chronic health conditions. Congress directed FDA to address such nutrient levels in foods by requiring increased access to information and certain disclosure statements.\(^1\) Congress did not direct or allow FDA to set maximum acceptable levels for nutrients in foods. The NLEA framework makes clear that Congress believed the appropriate way to regulate nutrients of public health concern is to provide the consumer with accurate information that facilitates an understanding of the role of nutrients in the daily diet. Simply, there is no provision of the FFDCA that allows FDA to set maximum limits on the amounts of nutrients that can be in foods.

The proposed voluntary average and upper bound targets strongly resemble the limits in a food additive regulation. FDA appears to be pursuing a “back route” to regulating salt as a food additive, when salt is by law exempt from the definition of a food additive. Salt is generally recognized as safe (GRAS) as a matter of law. In the 1958 Food Additives Amendment to the FFDCA, Congress issued a clear statutory mandate that if an ingredient has been commonly used in food prior to January 1, 1958, the ingredient is to be considered GRAS and is exempt from regulation as a food additive. The legislative history for the 1958 bill indicates that salt was commonly cited as the clearest example of a GRAS substance on the basis of common use in foods. The then Commissioner of Food and Drugs stated, “I would guess that salt has never gone through this modern-day testing technique. Yet everybody recognized that salt is not only safe, but it is necessary.”\(^2\) The Assistant Secretary of the Department of Health, Education and Welfare also identified salt as an ingredient that would be GRAS and escape regulation as a food additive.

With respect to existing additives generally speaking, a large group, such as table salt, would be classified as generally recognized as safe by competent experts. These would be additives as to which there was no substantial question of safety, which have been used over a long period. These, as I have said, would be outside of the definition of chemical additives.\(^3\)

The agency has historically considered it so obvious that salt is GRAS that it did not see the need to promulgate a specific regulation covering GRAS uses of salt, stating in its 1958 proposed and 1959 final regulation: “The Commissioner regards such common food ingredients as salt, pepper, vinegar, baking powder, and monosodium glutamate as GRAS for their intended use.”\(^4\) As a matter of law, therefore, salt is a GRAS substance that is exempt from the food additive definition.\(^5\) Congress specifically exempted GRAS ingredients from the definition of food additive and the records demonstrates Congress considered salt GRAS on the basis of common use in foods. FDA cannot regulate salt as a food additive in light of the clear congressional mandate that ingredients such as salt are GRAS on the basis of common use in foods.

\(^1\) The NLEA allowed for nutrient content claims to identify foods with lower levels of nutrients that are associated with an increased risk of disease; and health claims to identify foods that reduce the risk of disease or health-related conditions. With respect to certain nutrients that increase the risk of chronic disease, the NLEA required disclosures for nutrient content claims and disqualification for health claims.

\(^4\) 21 C.F.R. § 182.1(a) (previously 21 C.F.R. § 121.100(a)).

\(^5\) 21 U.S.C. § 321(s).
In issuing the draft guidance, FDA also has ignored more recent legislative intent. The FY 2017 appropriations bill contains language from the House Appropriations Committee that effectively blocks the agency from issuing draft targets until the Centers for Disease Control and Prevention (CDC) or the National Academy of Medicine (NAM) completes a Dietary Reference Intake (DRI) update report on sodium. Once again, the agency is ignoring the clear mandate from Congress. The agency has not waited for completion of the DRI report to publish its draft guidance. Even more disturbing, we understand the agency is seeking to finalize the guidance document by December 2016, deliberately ignoring the appropriations language and moving forward without the benefit of a complete and current understanding of the available scientific evidence related to sodium.

We ask that FDA recognize the limitations of its legal authority, which do not permit the agency to either set upper limits on nutrients or effectively regulate salt as a food additive. We also urge the agency to abide by the appropriations language prohibiting FDA from issuing guidance on sodium reductions until the DRI report has been published.

The Guidance Process is Not an Appropriate Vehicle for the Sodium Reduction Goals

A guidance document is an inappropriate vehicle to issue the proposed sodium reduction goals because the goals do not represent mere guidance; instead, they represent an attempt to expand the agency’s statutory authority. The FDA guidance document process is intended for the agency to clarify its statutory and regulatory interpretations and to communicate agency policies to the public. Any guidance document must be based on underlying statutory authority. As discussed above, there is no such statutory authority that permits FDA to mandate the nutritional content of foods. As a result, FDA cannot publish “guidance” that contains recommendations that are not based on an underlying regulatory requirement.

For acrylamide in foods, for instance, FDA did not publish upper limits but instead provided guidance to the industry on suggested strategies to reduce acrylamide in foods. Such a topic is appropriate for guidance because there is an underlying statutory provision deeming a food adulterated if it contains a poisonous or deleterious substance with may render it injurious to health. The acrylamide guidance, therefore, was aimed at clarifying how companies can meet their statutory obligation to ensure that foods are not adulterated due to acrylamide levels. In contrast, FDA has no underlying statutory authority to set levels for nutrients in foods, so a guidance document recommending such levels for sodium is unlawful.

In Practice, the Draft Guidance Will Not Simply be “Voluntary”

We understand that FDA has published the draft guidance as a set of voluntary goals, that guidance documents are positioned as having no binding legal effect, and that the present guidance has not yet been finalized. Nevertheless, given the practical ways in which guidance documents are used both within the agency and by other parties, we believe it is disingenuous for the agency to assert that the proposed target average and upper bound levels for sodium in foods are voluntary and not binding.

FDA commonly enforces the positions articulated in its guidance documents, including by citing such documents in FDA Form 483 observations or in Warning Letters. For example, FDA has cited its draft guidance on acidified foods and its final guidance on refrigerated low-acid juices in FDA Form 483 observations and in Warning Letters. We are concerned that

investigators may evaluate whether a manufacturer has adequately assessed the sodium levels of foods under its food safety plans by consulting the draft guidance.

Moreover, courts have consistently held that under the Administrative Procedure Act (APA), the agency cannot significantly alter an entrenched interpretation or policy without conducting notice-and-comment rulemaking. The practical effect of this legal principle is that once the FDA guidance document is finalized it could become an established agency position that cannot be changed absent formal rulemaking. It is disingenuous for FDA to assert that the document is simply voluntary when the agency is recommending average sodium levels for 150 different categories of foods, along with “upper bound” targets that represent the maximum level of sodium that FDA recommends for the specific category. Those levels will become the de facto levels of sodium that can be present in foods.

Beyond FDA, private parties routinely bring legal challenges seeking to enforce an FDA guidance document or other non-binding FDA policy as a mandatory requirement. One need look no further than the hundreds if not thousands of lawsuits brought against the food industry in the last five years citing alleged violations of non-binding FDA labeling policies, including the “informal” FDA policy on “natural” claims or the FDA draft (and now final) guidance on the labeling of evaporated cane juice as an ingredient, as the basis for a claim that labeling or advertising statements are misleading under state consumer protection laws. In fact, courts have deferred to such draft guidance as representing the viewpoint of the agency. Another example is FDA’s non-binding policy on the fortification of foods, which has been cited as the basis for legal challenges even where the product did not bear any of the nutrient content claims that trigger the mandatory effect of the fortification policy.

Even FDA letters to industry have been the basis for challenges. In practice, it is clear that the non-binding guidance document will be enforced as a mandatory requirement. The fact that a document is issued in draft form or as a non-binding guidance document has not dissuaded the agency from citing the document as the basis for enforcement activity, nor has it prevented individuals from bringing lawsuits citing the agency recommendation. Even if FDA itself does not enforce the targets as mandatory upper limits, other parties may seek to do so and the end result is that FDA’s recommendations will have mandatory effect despite lacking legal authority and not being issued through an appropriate process.

The Draft Guidance Inappropriately Restricts Consumer Choice

The draft guidance represents an inappropriate and unreasonable encroachment upon individual choice. The proposed scheme would take away consumer ability to choose foods with the sodium levels they prefer. Many of the long-term upper bound targets fall just above the threshold for “low sodium” nutrient content claims; and the long-term average targets for many categories are well below the threshold for low sodium foods. FDA is essentially

9. *Werdebaugh v. Blue Diamond Growers*, No. 12-CV-02724, 2013 WL 5487236 at *9 (N.D. Cal. 2013) (“[T]he Court finds that the 2009 Guidance ‘advis[ing] the regulated industry of the FDA’s view that the term “evaporated cane juice” is not the common or usual name of any type of sweetener, including dried cane syrup’ represents the viewpoint of the FDA.”)

11. See, e.g., *Gustavson v. Wrigley Sales Co.*, 961 F. Supp. 2d 1100, 1111 (N.D. Cal. 2013) (complaint alleges Defendants ignored an FDA guidance letter to industry stating that quantitative nutrient claims are considered nutrient content claims).
recommending that within ten years all products should be low sodium or close to low sodium. Consumers may not want to consume lower sodium foods and food manufacturers should have the ability to provide a range of options tailored to consumer preferences. The draft guidance also fails to recognize the role of higher sodium foods that are consumed less frequently but that can still fit within an overall healthy dietary pattern. By setting upper limits for all foods to meet, the guidance ignores the role of consumer choice and responsibility.

Food manufacturers have offered lower sodium foods for many than 20 years and have found that sales generally plummet following reformulation. Offering lower sodium foods does not reduce population intake of sodium if consumers do not purchase them. Many food manufacturers have significantly reduced sodium in foods, only to find that consumers do not choose the lower sodium products. Manufacturers should be free to respond to the market demands for sodium levels in foods, and not be tasked with making products that consumers do not desire and will not purchase.

The Current Scientific Evidence Does Not Support a 2,300 mg/day Target Dietary Sodium Level

The draft guidance is premised upon the goal of reducing sodium intake to 2,300 mg/day among the general U.S. population. To support the selection of this target, the agency explains that when considering the recommendations of scientific groups that are charged with examining the totality of the evidence, a consensus exists that reducing sodium intake to 2,300 mg/day is a viable, achievable and effective strategy to reduce the incidence of cardiovascular disease (CVD). In particular, FDA cited a 2013 report published by the Institute of Medicine (IOM), which, according to the agency, concluded that evidence was sufficient to support an association between lower sodium intake at 2,300 mg/day and lower cardiovascular-related events.

The Salt Institute has carefully reviewed the 2013 IOM report titled “Sodium Intake in Populations: Assessment of Evidence” and respectfully submits that the agency has misinterpreted the findings of this report. While controversies have surrounded the contribution of sodium consumption to CVD for decades, emerging evidence shows there are also potential adverse effects associated with a too-low dietary sodium intake. It is under this context the IOM conducted its review in 2013.

The evidence for the effect of sodium intake on health outcomes reviewed by the IOM included a broad range of population groups and methodological approaches. All of the evidence on the health outcomes related to CVD, stroke, and mortality was observational, mostly prospective cohort studies. While the report indeed concluded that the current scientific evidence shows there is a positive relationship between higher levels of sodium intake and the risk of CVD, it did not propose any specific target range of dietary sodium such as the 2,300 mg/day cited by the agency. Instead, the IOM pointedly stated:

“The committee was not asked to draw conclusions about a specific target range of dietary sodium for the general population or for population subgroups. However, the committee notes that there are important factors it considered that preclude such a conclusion.”

intake levels when the variables of interest are continuous. That is an especially
difficult issue in the present circumstances, where the target intake level could
theoretically differ for different, large population subgroups.14

As the above statement from the IOM clearly demonstrates, experts from the IOM were not
asked to provide a specific target for dietary sodium such as the 2,300 mg/day proposed by
FDA. Moreover, even if the IOM was tasked with such request, it would not be able to do so
due to the many variables used in measuring salt intake by different scientific reports.
Instead of reaching a consensus on the target sodium intake level as suggested by FDA, the
only consensus noted by the 2013 IOM report is that no such healthy intake level can be
developed based on the current scientific evidence. In particular, the report states that:

\begin{quote}
\textit{It was the consensus of the committee that the lack of consistency among studies
in the methods used for defining sodium intakes at both high and low ends of the
range of typical intakes among various population groups precluded deriving a
numerical definition for high and low intakes in its findings and conclusions. Rather,
it could consider sodium intake levels only within the context of each individual study.
Likewise, the extreme variability in intake levels between and among population
groups precluded the committee from establishing a “healthy” intake range.} (Emphasis added).
\end{quote}

Indeed, in the studies reviewed by the IOM, high sodium intake ranged from about 2,700 to
more than 10,000 mg per day. The high intake ranges of some studies even overlap with the
lower range of others. The Salt Institute respectfully asserts the agency has
mischaracterized the IOM report and the data simply do not demonstrate that 2,300 mg of
sodium per day is the level that is necessary to reduce the risk of CVD. According to the
experts at IOM, the current scientific evidence does not allow for the establishment of a
“healthy intake range” due to the extreme variability in intake levels among different studies
and age groups.

In contrast, the Salt Institute believes the latest evidence published during the last five years
also demonstrate that there is a safe “range” of salt consumption that results in a lower risk
to the overall population. As discussed in detail in our prior comments regarding dietary
sodium intake of the \textit{2015-2020 Dietary Guidelines for Americans} (a copy is also attached,
see Exhibit A), sodium take from 2,800 mg/day to 4,800 mg/day can be considered safe.
The current 3,400 mg/day of sodium by U.S. consumers fall squarely in this range.

\textbf{The Agency’s Sodium Reduction Goals for the General Population Could Lead to
Unintended Adverse Effects among Certain Sensitive Subpopulations}

The approach used by the agency to set the recommended targets for sodium failed to
consider the great variabilities of sodium intake among subpopulations and may lead to
unintended adverse effects in sensitive subpopulations.16 In a study conducted by Fulgoni,
Victor L., et al. (2014), the authors analyzed the sodium intake across all population

14 See supra note 11 at Page 7 (emphasis added).
15 See id at Page 121.
16 The agency developed the target mean and upper bound sodium concentrations based on the average intake data
from the general population. According to FDA’s \textit{Voluntary Sodium Reduction Goals: Supplementary Memorandum to the
Draft Guidance} (Ref. 17), the agency adopted a so-called “sales-weighted mean concentration targets” approach to
develop the sodium levels in various foods. In particular, FDA first applied a flat 40 percent reduction to the sodium
intake to all foods in the targeted food categories that were reported in USDA’s \textit{What We Eat In America}
(WWEIA/NHANES, 2007-2008) as a starting point. The agency’s modeling showed that the mean sodium intake by all
aged 2+ years in 2007-2008 of about 3,460 mg/d could be lowered to approximately 2,300 mg/d as a result of the default
40 percent reduction.
subgroups using NHANES 2007-2010 data. The study found that the intakes varied greatly among different age, gender, and ethnicity groups and the results are summarized in Figure 1 below.

As the above table indicates, usual intake of adults (age 19–50 years) of any gender and ethnicity was higher compared to children (age 2–18 years) and older adults (age 51 years and above) of the same gender and ethnicity. The age-related differences in usual intakes were much more pronounced in males than in females of any ethnicity. Males of any age and ethnic group consumed more sodium than females of the corresponding age and ethnic group. While the intake for male 19-50 is higher than 2,300 mg, other subgroups such as females 51+ have sodium intake very close to 2,300 mg. We are concerned that a 40 percent reduction of dietary sodium in all foods may dramatically reduce the current dietary sodium intake for this group and lead to unintended adverse effects when the dietary sodium intake level is too low.

While we recognize some studies suggest excessive intake of sodium may be linked to surrogates of CVD, experts of the IOM determined that evidence from studies on direct health outcomes were insufficient and inconsistent regarding an association between sodium intake below 2,300 mg per day and benefit or risk of CVD outcomes or all-cause mortality in the general U.S. population. There is also indisputable evidence that low-sodium intake may lead to adverse effects, especially in certain sensitive subpopulations. Indeed, in the 2013 IOM report FDA referenced in the draft guidance, the experts from the IOM concluded that the available evidence suggested low sodium intake may lead to higher risk of adverse events in mid- to late-stage congestive heart failure patients with reduced ejection fraction and who are receiving aggressive therapeutic regimen.

The 2013 IOM report also acknowledged that the evidence in some cases is suggestive of associations between lower sodium intake (below 2,300 mg per day) and CVD risk. For example, the IOM report referenced studies using data from NHANES which used 24-hour recall data to estimate sodium intake. In particular, two studies, Cohen et al. (2006) and

Cohen et al. (2008), found an increased risk of CVD at lower sodium levels. In Cohen et al. (2006), the authors examined the data from a community sample representing 78.9 million non-institutionalized US adults (ages 30-74) and found inverse association of sodium to CVD mortality. In Cohen et al. (2008), the same group also found association of lower sodium with higher mortality, although the associations are mostly modest and not statistically significant.

The IOM specifically addressed the data evaluating the effect of diets containing less than 2,300 mg per day and concluded the evidence is suggestive of an association between lower sodium intake and adverse health outcomes.

The committee found, in contrast, that the evidence from the current literature is inconsistent with regard to associations with sodium intakes below 2,300 mg per day, with results ranging from lower, similar, or higher risk of CVD, stroke, or mortality, including all-cause mortality. All of the studies identified have limitations of different types. The evidence in some cases is suggestive, however, of associations between lower sodium intake (below 2,300 mg per day) and potential increased risk of adverse health outcomes, though reverse causation, confounding, and systematic measurement error cannot be ruled out.

The association between lower sodium intake and adverse health outcomes can be explained by the Renin-Angiotensin System ("RAS"), which is the physiological mechanism to counter inadequate salt consumption. As discussed in more details in our prior comments (see Exhibit A), when any one of our body's sensory mechanisms detects that we are not consuming sufficient salt, the RAS is activated to signal the kidney to conserve sodium and reabsorb it back into the circulatory system. Although the RAS system helps human body maintain the balance of sodium, its function is also associated with a series of adverse health effects (e.g., CVD risks) that are similar with those observed with lower sodium intake summarized above.

There are also many other studies reporting various adverse effects associated with low-sodium diet among people with health conditions such as insulin resistance, metabolic syndrome, diabetes, iodine deficiency diseases, cognition loss, and hyponatremia. We note these health conditions are more commonly associated with the senior population (e.g., female age 51 years and above) whose current sodium intake are already very close to the 2,300 mg/day proposed by FDA. A 40 percent reduction of dietary sodium in all food

20 See id.
21 See id.
22 See supra note 11 at Page 108.
applications will decrease the dietary sodium intake among these subpopulations and may lead to unintended adverse health effects that are not addressed in the current draft guidance.

As discussed in our prior comments (see Exhibit A), our position is further supported by several recent meta-reviews making it clear that population-wide salt reduction will not provide any significant health benefits and may possibly result in harm to consumers. In particular, three Cochrane Collaboration reviews all concluded that there is insufficient evidence to warrant population-wide salt reduction.

In all, given the lack of conclusive scientific evidence supporting the specific 2,300 mg/day target dietary sodium goal, as well as the potential adverse effects for sensitive subpopulations with a low-sodium diet, the Salt Institute urges the agency to reconsider whether it is appropriate to propose a specific sodium target level to reduce intake of dietary sodium among the general population.

FDA’s Sodium Reduction Policy Is Impractical, Misinformed, and Based on Inconclusive Scientific Science

Last but not least, the Salt Institute would like to ask the agency to reconsider whether its draft guidance on lowering sodium intake as a public health policy can ever alter, or should attempt to alter, what appears to be a physiologically set normal range in adult humans based on inconclusive scientific evidence.

As discussed in our prior comments (see Exhibit A), one unique feature of sodium consumption is that there is a non-behavioral, neurally-mediated “salt appetite.” A recent study analyzed existing research to determine whether sodium or salt intake follows a pattern consistent with a range set by the brain to protect normal functions of organs such as the heart and kidney.

The data showed that humans have a habitual sodium intake in the range of 2,800 mg to 4,600 mg/day. The current average intake of 3,400 mg/day by the U.S. general population falls into this range. In addition, according to the most recent survey by the UK Food Standards Agency, despite the food industry’s efforts in reducing salt intake by 10-25 percent in their processed food formulations, people still consume the same amount of salt, indicating they may be voluntarily adding more table salt or simply eating more food to compensate their “salt appetite.” As such, the non-behavioral, neurally-determined “salt appetite” is not affected by the availability of low-sodium alternative products. In other words, human physiology will prevail over FDA’s impractical public policy by forcing food manufacturers to reduce salt in the foods.

While in the draft guidance FDA recognized other important functions salt plays in the overall diet include microbial safety and stability, the Salt Institute finds it troubling that FDA failed to consider the overall benefit of having salt in “nutrient-rich” foods such as salads and vegetables that may otherwise not be consumed or may be consumed less frequently without salt. The bitterness in these products is naturally and routinely mitigated with salt or

other foods containing an appropriate level of salt. Therefore, reducing the salt in food formulations may make complementary salads and vegetables less palatable and reduce the overall quality of the diet. Any public policy regarding the dietary sodium intake cannot be conducted in isolation without considering the effects of sodium in the overall food formulations.

Public health policies based on inconclusive scientific evidence can lead to disastrous consequences. For example, public health recommendations for the U.S. population in 1977 were to reduce fat intake to as low as 30 percent of calories to lower the incidence of coronary artery disease (CAD). These recommendations resulted in a compositional shift in food materials throughout the food industry, and the fats were replaced principally with carbohydrates. High-carbohydrate diets are recognized as contributing to the lipoprotein pattern that characterizes metabolic syndrome and hypertriacylglycerolemia. Another example is cholesterol. The recently released 2015–2020 Dietary Guidelines for Americans lifted the longstanding caps on dietary cholesterol as the experts now find that there was “no appreciable relationship” between dietary cholesterol and blood cholesterol. It appears Americans have needlessly been avoiding foods such as egg yolks and liver for decades. Yet another example is the recommendations from the late 1960s to replace animal fats with partially hydrogenated fats, which contained trans fat. The food industry and consumers responded and significantly increased their intake of trans fats, which when consumed at high levels were found to be even more dangerous with regard to cardiovascular disease risk factors than the saturated fats they replaced.

At this time, the Salt Institute respectfully submits that research on how dietary sodium contributes to CVD is not sufficient to make public health policy recommendations for the general U.S. population to reduce dietary sodium intake to 2,300 mg/day. All of the evidence on the health outcomes related to CVD, stroke, and mortality was observational, mostly prospective cohort studies. These findings, which can be used by researchers to support a hypothesis, should not become the basis for a public health policy. The draft guidance’s goal of reducing the dietary sodium intake from 3,400 mg/day to 2,300 mg/day will not only require modification of existing foods, but also calls for changes in agriculture and food production, processing, and marketing, as well as food choices by consumers. We urge FDA to reevaluate whether a public health policy with such wide-spread effects should be based on inconclusive scientific evidence.

* * * * *

In conclusion, the Salt Institute urges FDA to abandon its efforts to set maximum levels on the amount of salt that may be added to processed and restaurant foods. By issuing guidance that sets maximum acceptable levels on individual foods, the agency essentially will be regulating an ingredient deemed GRAS under the FFDCA as a food additive. FDA lacks the legal authority to set maximum levels on the level of nutrients that can be added to food. Moreover, if finalized, the guidance would deprive consumers from purchasing those foods they choose to purchase, based on their taste preference. Many of the maximum targets would force the industry to offer only food products that are essentially “low in sodium,” products that consumers have consistently rejected over the years. By forcing the industry and consumers to adopt diets with 2,300 mg of sodium per day, there will be a subset of the population that will be consuming diets well under 2,300 mg of sodium per day. The most recent evidence by the IOM demonstrates that these low sodium diets (i.e., below

33 See id.
2,300 mg per day) may expose consumers to an increased risk of adverse health outcome. Rather than advancing the stated goals of increasing public health, the agency efforts could actually put a sizable subset of the U.S. population at increased risk of adverse health outcomes. Simply, the underlying science and law do not support this effort.

We, therefore, urge the agency to reconsider its position and abandon this effort.

We thank you for the opportunity to submit this comment.

Sincerely,

Lori Roman
President
Salt Institute
405 5th Ave. South, Suite 7C
Naples, FL 34102-6515

Enclosures

Exhibit A: Salt Institute Comments to USDA and HHS Re: Requests for Withdrawal of Sodium Dietary Guideline Provisions, Transparent Rulemaking and Withdrawal of any Requests for Voluntary Salt Reductions in Food Products by the FDA (April 11, 2016).
April 11, 2016

The Honorable Tom Vilsack
Secretary of Agriculture
U.S. Department of Agriculture
1400 Independence Avenue, S.W.
Washington, DC 20250

The Honorable Sylvia Burwell
Secretary of the Department of Health and Human Services
200 Independence Avenue, S.W.
Washington, DC 20201

Re: Requests for Withdrawal of Sodium Dietary Guideline Provisions, Transparent Rulemaking and Withdrawal of any Requests for Voluntary Salt Reductions in Food Products by the FDA.

Dear Secretary Vilsack and Secretary Burwell:

As demonstrated below, the provisions of the 2010 Dietary Guidelines for Americans and the 2015-2020 Dietary Guidelines for Americans related to sodium (“sodium provisions”) both violate the National Nutrition Monitoring and Related Research Act, 7 U.S.C. §5301, et seq. As a result, we respectfully request the withdrawal of the sodium provisions in those Guidelines and request the initiation of an open and transparent rulemaking procedure, with public hearings, supported by current and reliable scientific and medical evidence. And we request that you resist the proposed call for voluntary salt reductions in food products, an action that would be imprudent and likely harmful in light of current scientific evidence. The federal government pushing for reformulation of almost every food product made in the U.S. is unprecedented in its audacity. Every citizen will feel the effect of this overreach. Consumers are already free to choose from many alternatives to suit their taste and salt is a necessary nutrient essential for life and good health.

The sodium provisions, jointly issued as part of the Dietary Guidelines on January 31, 2011, by the U.S. Department of Agriculture ("USDA") and the Department of Health and Human Services ("HHS"), were based on inadequate medical and scientific evidence, as admitted by their original author, the Institute of Medicine ("IOM"). IOM published “Dietary Recommended Intakes ("DRIs") in 2004, that were adopted as the 2010 Dietary Guidelines, regardless of the IOM conclusion that: “...because of insufficient data from dose-response trials, an Estimated Average Requirement could not be established and thus a Recommended Dietary Allowance could not be derived.”1

Regardless of this scientific conclusion, IOM’s arbitrary, outdated, non-governmental guidelines, issued without adequate protections against bias and conflicts of interest, and without the protections of transparent rulemaking under the Administrative Procedures Act, were adopted by

1 Institute of Medicine, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, 269-423 (2004).
the 2010 Dietary Guidelines, improperly delegating the statutory role of the Departments and the Executive Branch, to an outside party, without regard to the statutory duties imposed on the Departments.

Your intervention is sought to assure both compliance with law and sound policy created by transparent rulemaking procedures that rely on current scientific and medical evidence, evaluated by the Departments.

The National Nutrition Monitoring and Related Research Act, 7 U.S.C. §5301 et seq., requires USDA and HHS to publish “nutritional and dietary information and guidelines for the general public” and to base the Dietary Guidelines on “the preponderance of the scientific and medical knowledge which is current at the time the report is prepared.” 7 U.S.C. § 5341(a). Both the 2010 and 2015-2020 iterations of the Dietary Guidelines are inconsistent with the statutory mandate because their sodium provisions are arbitrary and capricious.

Alone, the flawed sodium provisions in these Dietary Guidelines cause significant harm to the public by distributing scientifically unsupportable information disparaging sodium, a mineral essential to human health, under the banner of the United States, and thereby increasing risks for consumers, adversely impacting the market for dietary salt, and causing concern for inappropriate regulatory and litigation initiatives. Furthermore, any call by the FDA for voluntary salt reductions in food products will ensure a greater risk to consumers with no promise of benefit.

The issuance of the 2015-2020 Dietary Guidelines for Americans is clear proof of the unreliability of the process. We had previously warned both the U.S. Department of Agriculture and the Department of Health and Human Services that the sodium provisions of the 2010 Dietary Guidelines were wrong and unsupported by the evidence, yet the Guidelines were published without reserve. The 2015-2020 Dietary Guidelines confirmed that the key recommendation of 1,500 mg sodium per day in the 2010 Dietary Guidelines was unjustified and withdrew it, but not before consumers were misguided on salt recommendations for 5 years – a situation that could have been totally avoided if the guidelines had been based on an unbiased review of the science.

Below, we explain further why the proposed sodium provisions in the 2010 Dietary Guidelines and the current 2015-2020 Dietary Guidelines should be withdrawn and we provide an assessment of current available scientific and medical evidence that was not adequately considered by the Departments. We trust that you will find this assessment helpful as you fulfill your duties to enhance the public health and welfare with sound dietary policies and standards consistent with medical and scientific evidence.

2 Both the Dietary Guidelines and the 2005 Dietary Guidelines contain the same sodium limit range of 1500-2300 mg/day. Because a Recommended Daily Allowance could not be determined, the IOM set DRIs that are the basis for the sodium limits in both the 2010 Dietary Guidelines and the 2005 Dietary Guidelines. See IOM, Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate (2004).
I. The Sodium Provisions of the 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines Violate the Statutory Mandate, were Contradicted by the Contemporary, Sound Scientific Evidence and Should have been Withdrawn.

The 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines are joint products of USDA and HHS. The Dietary Guidelines are reviewed, updated (if necessary), and published every five years. 7 U.S.C. § 5341(a)(1) (“At least every five years the Secretaries shall publish a report entitled ‘Dietary Guidelines for Americans’ [which]… shall contain nutritional and dietary information and guidelines for the general public, and shall be promoted by each Federal agency in carrying out any Federal food, nutrition, or health program”).

The Dietary Guidelines must contain nutritional and dietary information for the general public and must be “based on the preponderance of the scientific and medical knowledge which is current at the time the report is prepared.” 7 U.S.C. § 5341(a)(2). The process of generating each edition of the Dietary Guidelines is a joint effort of the USDA and HHS and has evolved to include at least three publicly disclosed stages. In the first stage, an external scientific Dietary Guidelines Advisory Committee (“DGAC”) is appointed. During the second stage, the Agencies develop the Dietary Guidelines and consider comments provided in response to the DGAC’s report. Finally, the two Agencies develop messages and material communicating the Dietary Guidelines to the general public.

For the Dietary Guidelines, the DGAC consists of nutrition and health experts who were appointed to conduct a rigorous and unbiased analysis of scientific information on diet and health and to prepare a report summarizing its findings. It is at this stage where the initial problems with the 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines arose. In the case of the 2010 Dietary Guidelines, rather than independently assessing all of the scientific and medical data currently available, the DGAC merely adopted the conclusions of the DGAC that prepared the 2005 Dietary Guidelines and apparently considered “subsequent evidence, especially regarding diet and blood pressure in children.” Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2010, D6-2 (originally submitted June 14, 2010).

The DGAC in 2005 derived its sodium consumption recommendations by simply adopting the Dietary Recommended Intakes (“DRIs”), published in 2004 by the Institute of Medicine (“IOM”). This document clearly stated that for sodium, “...because of insufficient data from dose-response trials, an Estimated Average Requirement could not be established and thus a Recommended Dietary Allowance could not be derived.” Despite acknowledging a lack of evidence, the document went on to make arbitrary recommendations that are followed to this day. One common thread links the decision to adopt flawed recommendations in the first instance, and then base two separate sets of Dietary Guidelines on the flawed DRIs -- the chair of the 2010 DGAC’s subcommittee on electrolytes served in the same capacity when the 2005

3 Institute of Medicine, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, v.-xiii (2004).
4 Both the Dietary Guidelines and the 2005 Dietary Guidelines contain the same sodium limit range of 1500-2300 mg/day. Because a Recommended Daily Allowance could not be established, the IOM set DRIs that are the basis for the sodium limits in both the 2010 Dietary Guidelines and the 2005 Dietary Guidelines. See IOM, Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate (2004).
Dietary Guidelines were developed, and was the chair of the Panel on Dietary Reference Intakes for Electrolytes and Water, which was responsible for developing the DRI’s. A rigorous analytical process cannot feature one and the same individual piloting the creation of standards and then being charged with evaluating his own recommendations, and then five years later, being tasked once again to evaluate his prior evaluation.

The Dietary Guidelines purport “to summarize and synthesize knowledge about individual nutrients and food components into an interrelated set of recommendations for healthy eating that can be adopted by the public[.]” The Dietary Guidelines also are relied upon by “policymakers in designing and carrying out nutrition-related programs, including Federal food, nutrition education, and information programs.”

Rather than thoroughly assessing the current scientific and medical knowledge, the Agencies reached a conclusion in 2005 based on insufficient evidence and then repeated the error in 2010 and again in 2015. To cure this defect, the Agencies should withdraw the flawed sodium provisions and subject the topic of appropriate sodium limits to rulemaking under the Administrative Procedures Act to ensure that all interested parties are permitted to participate in a public forum and that decision making is supported by sound and current scientific evidence.

As we described in numerous prior public comments, USDA and HHS repeatedly failed to consider and account for strong, evidence-based data that contradicts their preconceived hypotheses related to sodium intake. Moreover, the latest and best scientific evidence contradicts the sodium provisions in the 2010 Dietary Guidelines, emphasizes the critical role of sodium in health protection, and supports far higher levels of sodium intake than adopted by the Guidelines.

The most recent iteration of the Dietary Guidelines (Dietary Guidelines for Americans: 2015-2020) has once again demonstrated that they are an inadequate means of conveying the latest science-based nutritional research to consumers. Although the latest edition of the Dietary Guidelines has withdrawn the strong recommendations in the 2010 Dietary Guidelines to consume less than 1,500 mg sodium, because the latest research has shown this to be a risk to the general population, it continues to recommend an upper limit of 2,300 mg sodium, despite the overwhelming number of scientific research publications that have cautioned against it since the

last 2010 Dietary Guidelines were issued, including the landmark Institute of Medicine (IOM) publication, which stated that there was no consistent evidence to support an association between sodium intake and any adverse effects on health outcomes. On the contrary, it indicated a negative association of reduced dietary sodium with cardiovascular disease outcomes and all-cause mortality. Reduced sodium has been linked to an increase in cardiovascular events and mortality. It is worth noting that the 2015-2020 Dietary Guidelines, which was meant to be a full review of the latest evidence published since the 2010 Dietary Guidelines, made several reference to old IOM reports, but totally neglected to mention the milestone 2013 IOM report that did not support salt reduction – public policy cannot be scripted by ignoring landmark reports and evidence that clearly contradicts the established dogma. The essence of scientifically derived evidence is that it is reproducible and cannot be circumvented by biased and unsubstantiated opinion.

The latest evidence persistently published during the last five years demonstrate that there is a safe “range” of salt consumption that results in a lower risk to the overall population. According to this research, the lower end of this safe range begins at 2,800 mg and extends up to 4,800 mg sodium. Americans consume about 3,400 mg sodium on average – at the lower end of this safe range. Notwithstanding this most recent evidence, the new 2015-2020 Dietary Guidelines stubbornly clings to the invalid recommendation of 2,300 mg sodium – a figure outside the safe range because of obsolete “…evidence on blood pressure, a surrogate indicator of CVD risk.” Most physicians agree that surrogate measures have no place in effective public policy making.
However, the failure of USDA and HHS to follow their statutory mandate led to the issuance of these flawed 2015-2020 Dietary Guidelines\(^{22}\) that contain arbitrary, capricious, and potentially harmful findings.

II. Both the Process Used to Derive the Dietary Guidelines and the Assessment of the Scientific and Medical Evidence Were Fundamentally Flawed

The processes used by USDA and HHS to develop both the 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines were systemically flawed. Rather than assessing all of the available scientific and medical evidence and using this analysis to draw valid conclusions, the DGAC began with a conclusion based on bias, and then justified its conclusion with selected evidence. By predetermining its conclusion, the DGAC was forced to undertake analytically suspect methods to justify its conclusion, including failing to consider the negative health impacts of sodium reduction in diets, failing to address the reality that there is a physiological sodium appetite, and failing to address conflicting and inconsistent evidence related to the impact of sodium on blood pressure and obesity.

A. Key Members of the DGAC Appear to Have Injected Personal Bias into Both the 2010 and the 2015-2020 Processes

As we explained in Section I of this letter, we are concerned that the entire process that led to the development of the 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines was flawed. First, it appears that the DGAC began with a conclusion and then worked to justify its conclusion.\(^{23}\) This is counter to its mandate to perform a rational and independent assessment of all currently available scientific and medical knowledge in order to arrive at its recommendations. In addition to being analytically unsound, an approach with a foregone conclusion evidences the biases of the members of the DGAC.

As we pointed out in our comments to the Agencies, at the first meeting of the 2010 DGAC, when invited to make an opening statement, the chair of the DGAC’s subcommittee on electrolytes chose to use the platform to espouse his personal beliefs regarding the evidence. Rather than focusing the discussion on an assessment of all currently available scientific and medical evidence related to sodium, he revealed significant aspects of his own personal philosophy surrounding the issue of sodium intake and health, citing only the literature that supported his personal view.\(^{24}\)

Further, as we described in Section I of this letter, the DGAC subcommittee chair was also the chair of the Panel on Dietary Reference Intakes for Electrolytes and Water – the group tasked

\(^{22}\) Both the 2010 Dietary Guidelines and the 2005 Dietary Guidelines contain the same sodium limit range of 1500-2300 mg/day. Because a Recommended Daily Allowance could not be determined, the Institute of Medicine (“IOM”) set Dietary Recommended Intakes that are the basis for the sodium limits in both the 2010 Dietary Guidelines and the 2005 Dietary Guidelines. See IOM, Dietary Reference Intakes: Water, Potassium, Sodium, Chloride, and Sulfate (2004).

\(^{23}\) We also question whether the DGAC was constituted and operated in compliance with the Federal Advisory Committee Act. Public Law 92-463 (5 U.S.C. Appendix 2, the Federal Advisory Committee Act of 1972), as amended.

with developing the flawed DRIs25 upon which both the 2005 and 2010 Dietary Guidelines are based. Rather than engaging in a fresh and objective analysis of all the scientific and medical evidence available to craft the Dietary Guidelines, the process that appears to have occurred was to put the same individual who oversaw the development of the flawed DRIs in the position of evaluating his own recommendations for the creation of the 2005 Dietary Guidelines, and again for the creation of the 2010 Dietary Guidelines. Rather than appearing neutral and unbiased, taken together with the DGACs failure to consider contrary evidence, the process used strongly suggests that the DGAC relied heavily on the predisposition of its subcommittee chair when drafting its recommendations. It is difficult to see how an objective review can be carried out when both the Chairperson of the sodium subcommittee and the DGAC abandoned an evidence-based approach in favor of preordained biased views.

In the case of the 2015-2020 Dietary Guidelines, the sodium group was led by an individual who has publicly and repeatedly demonstrated a bias towards population-wide salt reduction. In fact, prior to the initial deliberations of the 2015-2020 DGAC, this individual was an author of the Presidential Advisory recommending maintenance of the previous Dietary Guidelines recommendations for salt reduction.26 Considering that the leader of the sodium provisions section had publicly made the commitment to support the established sodium recommendations for salt reduction of the 2010 Dietary Guidelines prior to the deliberations for the 2015-2020 Dietary Guidelines, it should come as no surprise that the 2015-2020 Dietary Guidelines process ignored the latest evidence and reiterated the 2,300 sodium upper limit, despite the fact that no new evidence to support it was presented. In fact, the real surprise was that an individual, publicly pre-committed to a one-sided view of the sodium issue, was selected to be on the DGAC, and then as head of the sodium group. It is difficult to imagine a more cynical view of the principle of an impartial scientific evaluation of evidence. How can this process not be considered flawed?

This disregard for carrying out a rigorous and balanced analysis of the scientific evidence on dietary salt and health outcomes was highlighted in a very recent research article entitled, “A metaknowledge analysis of the salt controversy,”27 published in the International Journal of Epidemiology. Faced with such a disturbing case of bias in the interpretation of evidence, it would be nothing less than unethical to consider the sodium provisions of the Dietary Guidelines and any call for the reduction of salt in food products as legitimate.

25 Institute of Medicine, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate, ix (2004) (“The group responsible for developing this report, the Panel on Dietary Reference Intakes for Electrolytes and Water, under the oversight and assistance of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (the DRI Committee), has analyzed the evidence on risks and beneficial effects of nutrients included in this review.”).

B. The DGAC Failed to Consider Evidence Related to Negative Impacts of Sodium Reduction

By committing immediately to the DRIs developed in 2004, the 2010 DGAC failed to properly consider evidence related to the impact of salt consumption on the production of plasma renin. The Renin-Angiotensin System ("RAS") is the physiological mechanism to make up for inadequate salt (sodium chloride) consumption. When any one of our body’s sensory mechanisms detects that we’re not consuming sufficient salt, the RAS is activated to signal the kidney conserve sodium and reabsorb it back into the circulatory system. This complex neurohormonal chain reaction, perfected through biological evolution, is critical for maintaining balance in our circulatory system.

Unfortunately, although the RAS helps us make up for too little salt consumption, it does so at a heavy cost to our health. Elevated RAS levels cause metabolic syndrome, insulin resistance, cardiovascular disease, and a host of other serious conditions. There is no longer any doubt whatsoever that an elevated RAS is a very serious risk factor for overall health.

As can be seen from the diagram taken from Alderman, as our sodium intake is reduced, the plasma renin increases dramatically – it is the body’s natural response to salt reduction. The blue arrow shows that, once our sodium intake falls below 150 mmol sodium/day (3,450 mg), the body reacts by producing high levels of renin to activate the RAS chain reaction to conserve the available sodium. It is nature’s way to make up for an inadequate salt consumption.

The level of 3,450 mg sodium per day comes to approximately 9 grams of salt, which is close to the average American consumption. This is an example of the ‘wisdom of the body,’ the view that our body’s

34 N. Takahashi, F.Li, K. Hua, et al., Increased Energy Expenditure, Dietary Fat Wasting and Resistance to Diet-Induced Obesity in Mice Lacking Renin, 6(6) Cell Metab. 506-12 (Dec. 2007).
physiology is the best authority on determining our personal needs. This average level of salt consumption is sufficient to prevent any spike in RAS activity. However, the 2010 Dietary Guidelines recommend that we drop our consumption well below this, down to 2,300 mg sodium (100 mmol)/day. At this level, the orange line, the renin begins to rise rapidly. It is also abundantly clear that moving to the 1,500 mg sodium (65 mmol)/day level suggested in the 2010 Dietary Guidelines for more than half the American population significantly increases the impact. At this red line level, renin levels spike up dramatically. Nature’s response to reduced sodium has been deliberately downplayed and ultimately ignored to support the sodium provisions of both iterations of the Dietary Guidelines.38

While few would question the benefits of reduced blood pressure per se, salt reduction, the Dietary Guidelines’ primary strategy to achieve this, is a very poor and dangerous choice. Other more effective lifestyle strategies to reduce blood pressure, such as more physical exercise or the adoption of a Mediterranean-type diet, have no negative side effects. But reducing salt to lower the risk of blood pressure in the general population will stimulate elevated RAS and increases the risk of other diseases.

In fact, a recent issue of American Heart Journal39 makes it clear that the most important strategies to control cardiovascular disease involve blocking excess levels of renin and aldosterone, the principle components of the RAS. If blocking elevated RAS levels is so critical, then it’s clear that consuming enough salt to prevent elevated RAS in the first place is essential to good health.

There have also been a string of recent meta-reviews making it clear that population-wide salt reduction will not provide any significant health benefits and may possibly result in harm to consumers. Three Cochrane Collaboration reviews40 41 42 and a German Institute for Quality and Efficiency in Health Care meta-review43 all conclude that there is insufficient evidence to warrant population-wide salt reduction.

There is also a significant body of scientific and medical evidence that illustrates other serious negative consequences of a low-salt diet. For example, a very recent study from Harvard Medical School demonstrated that when healthy people were placed on a low-salt diet, they developed insulin resistance within 7 days.44 45 Other recently derived evidence showing the

grave negative consequences of a low-salt diet also does not appear to have been seriously considered in developing the *Dietary Guidelines*, including:

a) **insulin resistance**

i. This study demonstrates the insulin resistance induced by chronic dietary salt restriction.

b) **metabolic syndrome**

i. This study demonstrated that low-salt diets induced alterations in the plasma lipoproteins and in inflammatory markers that are common features of metabolic syndrome (precursor to heart attack, stroke, and diabetes) in healthy adults.

c) **congestive heart failure**

i. This randomized, controlled, double blind study demonstrated that low-salt diets result in much higher rates of mortality and hospital readmissions in patients with congestive heart failure compared to similar patients on a regular salt diet.

d) **diabetes 2 (all-cause mortality)**

i. In this study with type 2 diabetes patients, lower sodium was associated with increased all-cause and cardiovascular mortality.

e) **cardiovascular events**

i. This study was the third in a long series of NHANES-based analyses which showed higher mortality associated with lower sodium intake.

f) **iodine deficiency diseases**

i. This recent study demonstrated that more and more of the population is experiencing the potential for iodine deficiency diseases since the call for reduced salt consumption.

g) **cognition loss**

49 E.I. Ekinci, S. Clarke, M.C. Thomas, et al., *Dietary Salt Intake and Mortality in Patients With Type 2 Diabetes*, 34 Diabetes Care 703-09 (2011).

i. This study demonstrated that mild, chronic hyponatremia in the elderly resulting from low-salt diets induce a high incidence of falls, possibly as the result of marked gait and attention impairments.

h) hyponatremia

i. Mild hyponatremia even within the normal sodium range and hypernatremia are both associated with increased total mortality and major CVD events in older men without CVD which is not explained by known adverse CV risk factors.

i) death

i. This multi-year study on a very large cohort concluded that lower salt intakes resulted in higher morbidity and mortality.

As we have explained in prior comments, the evidence of the health outcomes of diets reduced in sodium show no benefit in terms of reduced mortality and we now remind you that the single controlled trial of this hypothesis found that subjects in the salt-reduced group of the cohort had a considerably greater incidence of mortality and more frequent re-hospitalization.

Because of the mistaken understanding that a reduction in salt intake will reduce blood pressure, which will in turn reduce cardiovascular events, the gold standard for dietary interventions for post-heart failure patients is a low sodium diet. However, the most recent evidence indicates that post-heart failure patients placed on low-sodium diets tend to die or are readmitted to hospital in far greater numbers than those that have not been placed on low-sodium diets. Further,
recent research indicates that there may indeed be very negative consequences if the diet limits sodium to the range of less than 2,300 mg Na/day as recommended in the Dietary Guidelines.61

In addition to the compelling evidence related to the RAS and other negative impacts of a low-salt diet, the DGAC failed to address other studies that linked lowered salt intakes to a variety of health problems, including low-birth weights63 and cognitive impairment64 in children. Also ignored were peer-reviewed studies that demonstrated increased rate of falls65 and fractures among the elderly,66 another nutritionally susceptible segment of society. In assisted living facilities, where all residents are given low-salt diets, the rate of falls and fractures are three times as great as in the normal home environment.67 We are left to surmise that the DGAC failed to consider this evidence because it did not fit within its justification for its predetermined conclusions.

Additional scientifically-derived clinical evidence continues to be published. In a recent study, published in the Journal of the American Medical Association, researchers studying 4,000 patients over 8 years found that lower sodium consumption was associated with an increased risk of cardiovascular mortality, while higher sodium consumption did not correspond with increased risk of hypertension or cardiovascular disease complications.68

C. The DGAC Failed to Consider Evidence Related to the Reality that there is a Physiological Sodium Appetite

In furtherance of its salt reduction program, dating back to the first set of Dietary Guidelines, Americans have been cautioned, then warned, about alleged dangers in high salt intakes.69

69 Americans’ salt intakes are exactly average in the world.
Americans have been convinced that salt intake should be minimized. Polls show that public education campaigns have been successful. Food companies have developed thousands of reduced-sodium foods to cater to this demand and those foods are consumed today in amounts far greater than in 1980. The “sodium density” of the American diet has been steadily decreasing resulting in less sodium intake per calorie. The result, however, has been an unchanged level of sodium intake and an increase in caloric intake leading to obesity.

Although certainly not a primary cause, the continued promotion of salt reduction found in the recommendations in the Dietary Guidelines and the anticipated call by the FDA for voluntary salt reductions in food products will likely worsen, not improve, the ongoing obesity crisis because people will consume more calories just to satisfy their innate salt appetite. Decades of animal feeding experience serve as a foundation for this statement. In addition, the most recent UK Food Standards Agency survey demonstrated that despite the food industry reducing salt significantly (10-25%) in their processed food formulations, people still consume the same amount of salt, indicating they are voluntarily adding more with the shaker or are simply eating more food (and calories) to satisfy their need for sodium.

As we have reported in our comments, there is scientific evidence of a non-behavioral, neurally-mediated “salt appetite.” Nowhere in the record created in support of the Dietary Guidelines were we able to find any serious consideration of this scientific evidence even though we shared it with the DGAC. Other recent studies support findings that there is a non-behavioral, neurally-mediated “salt appetite,” including a recent study in The Clinical Journal of the American Society of Nephrology that indicates that physiology, not public policy, will determine a human’s daily sodium intake. This research should have been considered by the DGAC because it undercuts the hypothesis that salt intake can be controlled by regulators rather than by nature. The study, Can Dietary Sodium Intake be Modified by Public Policy?, analyzed existing research to determine whether sodium or salt intake follows a pattern consistent with a range set by the brain to protect normal functions of organs such as the heart and kidney. The analysis is based upon 19,151 subjects studies in 62 previously-published surveys and reflects the differing “food environments” of 33 countries. The data reported documents that humans have a habitual sodium intake in the range of 2800 to 4600 mg/day -- with an average intake of 3,600 mg/day. Currently, the U.S. citizens consume an average of about 3,400 mg/day of salt.

Taken in combination, these two studies strongly suggest that salt/sodium intake is a neurally-determined salt appetite signaled unconsciously from the brain and not the product of taste, labeling, consumer education, nor of the availability of low-sodium alternative products. A

71 J.C. Geerling; and A.D. Loewy, Central Regulation of Sodium Appetite, 93(2) Exp. Physiol. 177-209 (Feb 2008).
74 This is consistent with the conclusion of renowned Swedish researcher, Bjorn Folkow, who described a “hygienic safety range” for sodium of 2,300 mg/day to 4,600 mg/day – recognizing that it could be as high as 5,750 mg/day. See Bjorn Folkow, News in Physiological Sciences (1990).
needs-based salt appetite suggests that whatever the Dietary Guidelines may say about salt intake, physiology will prevail over the opinions of policy makers.

D. The DGAC Failed to Address Conflicting and Inconsistent Evidence Related to the Impact of Sodium Intake on Blood Pressure

As we have previously explained to the DGAC, some recent research carried out on the issue of salt and health casts a significant shadow over the DGAC’s predetermined conclusion that reducing salt intake to the degree prescribed necessarily leads to significant reductions in blood pressure. While we are in full agreement with the potential health benefits of reducing blood pressure for those in our population that require it, the means of doing so should have its intended consequence and not provoke the development of negative biomarkers or cause harm of any kind.

Reduction of sodium intake to the 2,300 mg/day level does not conform to those needs. In the first instance, the intended impact on the target population is not highly significant as stated in the 2003 Cochrane review and restated once again in 2008. While salt reduction may result in a minor reduction in blood pressure for some portion of the population, a reduction in salt intake increases the blood pressure of another significant portion of the population. In light of these findings, if such a recommendation were to be made, surely the proviso must be given that a particular segment of the population will experience an increase in blood pressure. However, as with much of the other scientific and medical evidence provided in both our submitted comments and in this letter, it appears that no attention has been given to these studies by the DGAC in its dogged efforts to justify its predetermined conclusions.

E. Despite the Preponderance of Evidence that Population-Wide Sodium Reductions Are Not Warranted, the FDA Plans to Ask for Voluntary Salt Reductions in Food Products

In response to long-term pressure from the Center for Science in the Public Interest (CSPI), the FDA appears set to ask the food industry for voluntary salt reductions in food products. This is not a response to scientific evidence but an effort to appease CSPI. If the scientific evidence was there to support such an effort, the call for voluntary salt reductions in food products would have occurred years ago. As it happens, during the last 5-10 years, by far the preponderance of evidence has mitigated against population-wide salt reduction.

A call for voluntary salt reduction in food products holds clear dangers for consumers. In the first instance, consumers may not always be able to voluntarily make up for the salt removed from food product formulations. They will therefore be placed at a lower level of salt consumption, which has been shown (using World Health Organization data80, 81) to result in reduced life expectancy, reduced Health Adjusted Life Expectancy (HALE) and poorer health outcomes.

Reduced salt in food formulations may have a negative impact on the overall diet. Amongst the most important foods in a good diet are salads and vegetables. These items contained nutritious yet, somewhat bitter, phytonutrients. The bitterness in these products is naturally and routinely mitigated with salt or other foods containing an appropriate level of salt. Reducing the salt in food formulations may, at the same time, make complementary salads and vegetables less palatable. This would reduce the overall quality of the diet.

Reducing salt in food formulations cannot be done in isolation as food must be made acceptable to consumer tastes. Therefore, salt reduction must be accompanied by complex formulation changes that will satisfy the consumer’s palate. While some of the larger multinational food companies have developed the complex technology to do so, smaller food companies will be placed at a disadvantage. Most importantly, consumers themselves will be at greater risk because, while their taste perception may be deceived, metabolic physiology will not. Reduced salt intake will result in increased plasma renin, angiotensin, aldosterone activity which will, in turn, result in a cascade of reduced health outcomes.

81 World Health Organization Global Health Observatory. Accessible at http://www.who.int/gho/en/.
Finally, food products made in the US may be at a disadvantage to more traditional, imported foods, which are routinely preserved with salt, such as cheeses, hams and salamis. Many of these products have long established recipes and formal geographic designations, such as Parmesan and Gorgonzola cheeses from the Mediterranean Region, where cardiovascular health metrics are considered to be excellent. US products with reduced salt formulations may not be as competitive.

III. Conclusion

It is troubling that the Agencies have, to this point, adopted a mentality of continuous justification of a preordained conclusion rather than doing their statutory duty and setting standards based upon a rigorous assessment of all available scientific and medical evidence. However, we encourage you to change this practice and abandon the sodium provisions in the Dietary Guidelines in favor of an open, transparent rulemaking proceeding. Continuing to build policy and regulation on a fatally flawed foundation is both bad government and does nothing to protect our citizenry.

We hope that you will agree that the portions of the 2010 Dietary Guidelines and the 2015-2020 Dietary Guidelines that pertain to sodium are fatally flawed and should be withdrawn because they are not based on a preponderance of the scientific and medical evidence. The Agencies must withdraw those portions of the Dietary Guidelines in order to meet their statutory mandate. We also suggest that the expected FDA efforts to have voluntary salt reductions in food products be abandoned. Failure to take this action would be against the interests of consumers given the admissions made regarding the flawed foundation of the sodium provisions of the Dietary Guidelines, the impropriety of the process used by the DGAC in justifying the sodium provisions in the Dietary Guidelines, and the lack of consideration of the current science and medical evidence, including the evidence of harm that will be caused by the sodium provisions in the Dietary Guidelines.

Thank you for your attention and consideration.

Sincerely,

Lori Roman
President, Salt Institute